Artikelübersicht
Neueste Forschung
Wie ein winziges Tier uns hilft, Gehirnsimulationen mit KI zu verbessern
Können wir neuronale Netze bauen, die in Struktur und Rechenleistung einem echten Gehirn entsprechen? Ganz so weit sind wir zwar noch nicht, aber unsere neue Arbeit zeigt eine Strategie auf, wie wir diesem Ziel näherkommen können.
Mehr lesen
Science Storys
Ein Netzwerk, in dem Frauen sich gegenseitig stärken
Noch immer arbeiten im Bereich des Maschinellen Lernens weniger Frauen als Männer. Das hat Folgen: Frauen sind weniger sichtbar. Sie fühlen sich häufig isoliert. Gruppenleiterin Claire Vernade will das ändern. Zusammen mit neun Mitstreiterinnen hat sie die Gruppe "Tübingen Women in Machine Learning" gegründet.
Mehr lesen
Neueste Forschung
Von Menschen gesteuerte neuronale Netze für Synchrotron-Experimente
Synchrotronquellen erzeugen intensive Röntgenstrahlung, die heute für viele Forschungsgebiete unverzichtbar ist. Da in solchen Anlagen riesige Datenmengen erzeugt werden, müssen die relevanten Informationen aus diesen Daten extrahiert werden. Das gelingt mit Methoden des maschinellen Lernens, doch den Modellen fehlen wichtige Vorkenntnisse über die Struktur der untersuchten Systeme. Wir haben Forschenden ermöglicht, dieses Wissen in anpassungsfähige neuronale Netze einzuspeisen, und dadurch genauere Ergebnisse erzielt.
Mehr lesen
Science Storys
Die Monsune und den El Niño besser verstehen
Bedartha Goswami will eine Brücke bauen zwischen Maschinellem Lernen und den Klimawissenschaften. Das ist nicht einfach, denn bei der Methodenentwicklung im Maschinellen Lernen wird die Anwendung für den Klimabereich oft nicht mitbedacht. Goswamis Lösung: Er ist Teamplayer und hat in seiner Gruppe die interdisziplinäre Expertise versammelt, die für echte Durchbrüche in den Klimawissenschaften erforderlich ist.
Mehr lesen
Neueste Forschung
Lernen Menschen und Algorithmen auf die gleiche Weise?
Wenn Kinder erwachsen werden, ändert sich die Art und Weise, wie sie lernen, erheblich. Kinder handeln oft ohne erkennbare Absicht, Erwachsene zielgerichteter. Laut einer einflussreichen Theorie verhalten sich Optimierungsalgorithmen, die häufig bei maschinellem Lernen eingesetzt werden, ähnlich. Die nachfolgende empirische Untersuchung zeigt verblüffende Parallelen, aber auch gravierende Unterschiede zwischen menschlichem und maschinellem Lernen.
Mehr lesen
Debatte
Neue Wege in der Wissenschaftskommunikation: Der Themenkanal „KI und Nachhaltigkeit“
„KI und Nachhaltigkeit“ – ob zum Mitdiskutieren, Fragen stellen oder einfach sich informieren: Das alles gibt es seit dem 4. April 2023 auf der Wissenschafts- und Debattenplattform te.ma. Mit diesem neuen Ansatz wollen der Exzellenzcluster „Maschinelles Lernen“ und te.ma im komplizierten Dickicht der Wissenschaftskommunikation neue Impulse für den Dialog mit der Öffentlichkeit setzen.
Mehr lesen
Science Storys
Mit KI die Welt ein bisschen besser machen
Mit einer Promotion im Maschinellen Lernen liegt einem die Welt zu Füßen. Wissenschaft, IT-Branche oder doch was ganz anderes? Für Poornima Ramesh ist die Antwort nun klar: Sie möchte Maschinelles Lernen einsetzen, um die Lebensbedingungen von Menschen dort zu verbessern, wo die Problemlagen am drängendsten sind. Dazu hat sie sich einem globalen Beratungs-, Datenanalyse- und Forschungsunternehmen angeschlossen.
Mehr lesen
Debatte
Data Science und Maschinelles Lernen in Afrika – Entwicklungsperspektiven und Herausforderungen
Forschung im Bereich des maschinellen Lernens und den Datenwissenschaften in und aus Afrika hat das Potenzial, eine global wichtigere Rolle einzunehmen, und steht vor einzigartigen Herausforderungen. Mit seinen Graduiertenprogrammen bereitet das panafrikanische Netzwerk von AIMS (African Institute for Mathematical Sciences) junge Afrikaner*innen darauf vor, zu diesem Ziel beizutragen.
Mehr lesen
Neueste Forschung
Raus aus Platos Höhle: Maschinen erlernen die Dreidimensionalität unserer Welt
Ein 3D-Verständnis unserer Welt ist essentiell für zahlreiche Anwendungen im Bereich der erweiterten und virtuellen Realität, sowie für Simulationen. 3D-Trainingsdaten sind jedoch schwer zu beschaffen. Daher entwickeln wir einen Algorithmus zur Erstellung von 3D-Grafiken, der nur mit 2D-Bildern trainiert werden kann. Indem wir unseren Algorithmus so gestalten, dass er 3D-Daten effizient darstellen kann, halten wir den Rechenaufwand niedrig genug um den Übergang von 2D-Bildern zu 3D-Grafiken zu ermöglichen.
Mehr lesen
Science Storys
Die Energieversorgung der Zukunft vorhersagen
Wie stark die Sonne scheint und wie schnell der Wind weht, können wir nicht steuern. Um erneuerbare Energien besser zu nutzen, müssen wir jedoch berechnen können, wie Wetter und Klima sich verhalten. Die Modelle dazu entwickelt Nicole Ludwig, Expertin für maschinelles Lernen und nachhaltige Energien.
Mehr lesen